Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Funct Integr Genomics ; 23(4): 336, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968542

RESUMEN

Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity. These studies are highly valuable to identify novel genes involved in Fe homeostasis. However, in the absence of their systematic integration, they remain underutilized. A systematic meta-analysis of transcriptomics data from such ten previous studies was performed here to identify various common attributes. From this meta-analysis, it is revealed that under Fe deficiency conditions, root transcriptome is more sensitive and exhibits greater similarity across multiple studies than the shoot transcriptome. Furthermore, under Fe toxicity conditions, upregulated genes are more reliable and consistent than downregulated genes in susceptible cultivars. The integration of data from Fe deficiency and Fe toxicity conditions helped to identify key marker genes for Fe stress. As a proof-of-concept of the analysis, among the genes consistently regulated in opposite directions under Fe deficiency and toxicity conditions, two genes were selected: a proton-dependent oligopeptide transporter (POT) family protein and Vacuolar Iron Transporter (VIT)-Like (VTL) gene, and validated their expression and sub-cellular localization. Since VIT genes are known to play an important role in Fe homeostasis in plants, the entire OsVTL gene family in rice was characterized. This meta-analysis has identified many novel candidate genes that exhibit consistent expression patterns across multiple tissues, conditions, and studies. This makes them potential targets for future research aimed at developing Fe-biofortified rice varieties, as well as varieties tolerant to sub-optimal Fe levels in soil.


Asunto(s)
Deficiencias de Hierro , Oryza , Humanos , Oryza/metabolismo , Hierro/metabolismo , Perfilación de la Expresión Génica , Homeostasis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética
2.
Plant Physiol Biochem ; 203: 108084, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37832370

RESUMEN

Brassica rapa L. (2n = 20; AA) is a vegetable and oilseed crop that is grown all over the world. Its leaves, shoots, and seeds store significant amounts of minerals. We used inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the concentrations of eleven minerals in the leaves and seeds of 195 advanced generation inbred lines, of which 92 represented natural (NR) B. rapa and the remaining 103 were derived (DR) from a set of mother genotypes originally extracted from an allotetraploid B. juncea (2n = 36; AABB). The inbred lines differed for the composition of leaf and seed minerals. Leaf concentrations of N, K, Zn, and Se were higher in the DR subpanel as compared to NR subpanel, along with high seed accumulations of K and Se. DArT genotyping and genome wide association mapping led to the identification of SNPs associated with leaf and seed mineral compositions. Chromosomes A03, A05, and A10 harboured the most associated loci. Annotations of the regions adjacent to respective GWAS peaks allowed prediction of genes known for acquisition, transport, and accumulation of minerals and heavy metal detoxification. Transcriptome analysis revealed differential expression patterns of the predicted candidates, with most genes either down-regulated in derived genotypes relative to natural forms or their expression being comparable between the two. General downregulation may be a consequence of extracting B. rapa from allotetraploid B. juncea through genome resection. Some of the identified SNPs may be used as DNA markers for breeding programmes designed to modify the leaf and seed mineral compositions.


Asunto(s)
Brassica rapa , Brassica rapa/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Hojas de la Planta/genética , Semillas/genética , Minerales
3.
Physiol Mol Biol Plants ; 29(7): 985-1003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37649880

RESUMEN

Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01343-3.

4.
Front Plant Sci ; 13: 1035878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438090

RESUMEN

The fluctuating climates, rising human population, and deteriorating arable lands necessitate sustainable crops to fulfil global food requirements. In the countryside, legumes with intriguing but enigmatic nitrogen-fixing abilities and thriving in harsh climatic conditions promise future food security. However, breaking the yield plateau and achieving higher genetic gain are the unsolved problems of legume improvement. Present study gives emphasis on 15 important legume crops, i.e., chickpea, pigeonpea, soybean, groundnut, lentil, common bean, faba bean, cowpea, lupin, pea, green gram, back gram, horse gram, moth bean, rice bean, and some forage legumes. We have given an overview of the world and India's area, production, and productivity trends for all legume crops from 1961 to 2020. Our review article investigates the importance of gene pools and wild relatives in broadening the genetic base of legumes through pre-breeding and alien gene introgression. We have also discussed the importance of integrating genomics, phenomics, speed breeding, genetic engineering and genome editing tools in legume improvement programmes. Overall, legume breeding may undergo a paradigm shift once genomics and conventional breeding are integrated in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...